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Fmoc amino acid fluorides were found to be exceptionally well suited for the coupling of extremely hindered amino
acids using a new strategy involving treatment with bis(trimethylsilyl)acetamide prior to the acylation step.
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Fmoc amino acid fluorides have recently been shown to be excellent coupling reagents for both solution and solid
phase peptide synthesis1 and for efficient acylation of hydroxy functions®. However, their most impressive application is
for the coupling of adjacent sterically hindered amino acids such as Aib® as demonstrated by the first successful solid
phase synthesis of the pep(aibols‘, naturally occurring peptides containing a high content (up to 60%) of Aib residues.

In order to evaluate their scope and limitations, acid fluorides have now been applied to very bulky couplings. Initial
studies involved coupling of the very hindered o,a-dialkylated and N-methylated amino acid fluorides (lva, Deg,
NMeGly, NMeVal, NMeAib) with the moderately hindered amino group of Aib-OMe (Fig. 1). (coupling conditions:
HCixAibOMe 0.5 mmol, 0.55 mmol Fmoc amino acid fluoride, 1.05 mmol DIEA, 5 ml DMF). Fmoc amino acid fluorides

not previously described were prepared using the method of Carpino’a and Kaduk®, respectively.
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Figure 1.: Coupling of increasingly hindered Fmoc amino acid fluorides to Aib-OMe.
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While the coupling of acid fluorides derived from Aib and NMe-Gly proceeded without difficulty, problems arose when
more hindered residues were used. Thus, the speed of acylation was found to be significantly decreased when Fmoc-
Iva-F and Fmoc-NMeVal-F were used. The even more hindered systems Deg and NMe-Aib gave only small amounts
of the desired dipeptides (Fmoc-Deg-Aib-OMe: 18%; Fmoc-NMeAib-Aib-OMe: 12%). When the coupling rate was
particularly low as in these two cases, premature deblocking of the Fmoc group was observed as a prominent side
reaction. In addition, IR studies revealed that Fmoc-amino acid fluorides derived from o,a-dialkylated species are
converted slowly into the corresponding oxazolones when tertiary amines are present. The most extensive conversion
o oxazolone was found in the case of Deg (ca. 15% after 4h).

Since fluorides of proteinegenic amino acids suffer little conversion to oxazolone™ under the same conditions the
increased reactivity in the case of more hindered systems can be ascribed to the known "gem dialkyl effect™®. Thus
avoidance of conditions which promote such side reactions, e.g. the use of tertiary amines in polar solvent systems,
should be advantageous for couplings involving very hindered residues. Very recently it was reported that Fmoc amino
acid fluorides can be coupled even in the complete absence of any base’ and therefore the coupling of Fmoc-Deg-F
and Fmoc-NMeAib-F to Aib-OMe were repeated in DCM in the absence of DIEA (Fig. 2.). The HCI salt of the amino
component was first converted into the corresponding HF salt. Although in fact Fmoc-deprotection was significantly
reduced the coupling rate was very slow in both cases. Although the addition of 1 equivalent of DIEA accelerated the
rate of coupling without causing additional Fmoc-deprotection the yield of dipeptide did not rise above 20%, after 2 h.
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Figure 2.: Coupling of Fmoc-NMeAib-F (a) and Fmoc-Deg-F (b) to Aib-OMe under different conditions.

A more effective approach involved prior treatment of the amino component of the coupling system with a silylating
agent such as BSA®. Recently, it was found that amide bonds can be formed readily under mild conditions by reaction
of N-silylamines with acyl fluorides®, even in the case of sterically hindered secondary amines™.

In this communication an investigation of the reactivity of Fmoc-protected amino acid fluorides following silylation of
very hindered amino acid derivatives is described. Although TH-NMR studies showed that silylation was complete after
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5 min at room iemperature“, in these first studies silylation was allowed to proceed overnight prior to adding the acid
fluoride. Under these conditions increased rates of formation of dipeptide were observed. Interestingly, the addition of
BSA protected the Fmoc amino acid from premature Fmoc deblocking as indicated by the small amount of DBF
detected by HPLC analysis.
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Figure 3.: a) Coupling of Fmoc-Deg-F to Aib-OMe using varying amounts of BSA b) Coupling of Fmoc amino acid
fluorides to NMeAib-OMe.

As shown in Fig. 3a the amount of BSA added roughly paralieis the speed of reaction. In order to confirm the results
the method was extended to coupling onto the even more hindered amino group of NMeAib, which was earlier shown
to be extremely difficult. Previously only high temperatures (50 °C) or long reaction times (7 days) in combination with
large excess of an activated amino acid derivative (e.g. 5 eq. BOC-Phe-NCA) led to adequate reaction rates’.

Again when silylation of the methyl ester (2 eq. BSA ovemight in DCM) preceded coupling, high dipeptide yields were
obtained (Fig.3b) after relatively short reaction times (conditions: 2 eq. Fmoc-amino acid fluorides, 0.3 M in DCM).

In conclusion, it is clear that under appropriate conditions Fmoc amino acid fluorides are very effective for the
incorporation of even extremely hindered amino acids such as Iva, Deg or NMeAib into peptides.
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